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1. Relation between modularity and variability in the environment  

   

1.1 Entire networks analysis 

 

Figure S1 

a.       b.  
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Fig S1: Relation between modularity and variability for a. Entire network c=0.55, p<10
-4

.  

b. The giant component of the metabolic network. 
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1.2 Reactions-substrates bipartite networks analysis 

 

Reaction-substrate bipartite graph is a description of the metabolic reactions, where 

each metabolite node is connected to the reactions nodes that consume/produce it.  

Qrand was computed by averaging over bipartite random networks that preserve the 

metabolites’ as well as the reactions’ degree distribution. 

Figure S2 
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 s, in bipartite metabolic network  Relation between modularity and variability:2Fig S

c=0.59, p<10
-4
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1.3 Equal size network analysis 

 

1.3.1 Construction of equally-sized networks 

 

Metabolic networks of bacteria with different lifestyles are of different sizes. To 

control for the effect of the network’s size, we repeated the analysis on reduced 

networks with the same number of nodes. We constructed a set of equal size networks 

(60 nodes) by a serial removal of nodes with degree <=2 (i.e. we remove cycles and 

shorten linear pathways).  

 

1.3.2       Analysis Results  

 

Figure S3 
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(metabolites), c=0.5, p<10
-4

. 



 

1.4 Partial Pearson correlation between modularity and variability 

 

Perason’s partial correlation between X and Y conditioned on Z allows one to 

compute the correlation between X and Y, discounting the correlations between X 

and Z and between Y and Z [1]. We computed the correlation between modularity 

and variability conditioned on the size of the networks (=number of metabolites).  

For this purpose, we grouped the species into two classes corresponding to 

bacteria with low-variability lifestyle (Obligate, Specialized and Aquatic) and 

bacteria with high-variability lifestyle (Facultative, Multiple, Terrestrial). The 

partial Pearson correlation between modularity and variability conditioned on the 

size of the network is c=0.24 with p-value= 0.02. This implies that the correlation 

is still significant when conditioned on network size. It is not as high as the full 

correlation coefficient because variability itself seems to correlate with network 

size (Fig 1b, main text). 

1.5  Networks Statistics 

 

Network 

Statistic 

#Nodes 

(Full Net) 

 

 

min    median        max 

#Edges 

(Full Net) 

 

 

min    median    max 

#Nodes 

(Giant Component) 

 

 

min    median    max 

#Edges 

(Giant Component) 

 

 

min    median    max 

Qm  

(on the giant component) 

 

 

min     median       max 

Obligate 

 

136 330 712 99 281 596 21 89 280 23 102 322 -0.2  0.26 0.5 

 

Specialized 

481 496 521 428 451 460 206 235 299 222 258 336 0.22  0.36 0.43 

  

Aquatic 

 

 

510 577 714 450 500 655 224 264 386 251 290 440 0.28 0.3365   0.41 

 

Facultative 

230 694 856 171 630 811 40 333 473 42 385 574 0.11  0.4529   0.54 

 

Multiple 

448 690 878 398 660 835 193 454 360 214 431 553 0.26 0.45 0.5 

 

Terrestrial 

618 710 743 559 677 706 282 385 421 329 463 498 0.41 0.47 0.5 

 

Total 

136 562 878 

 

99 515 835 21 282 473 23 322 574 -0.2  0.4141   0.54  

 

 



 

2. Relation between variability in the environment and other structural 

indices of the metabolic networks 

           

2.1 Clustering-coefficient 

Clustering coefficient reflects the local community structure [2]. The 

clustering-coefficient of a node is defined as the number of edges between its 

neighbors divided by the total number of possible such edges (considering the 

network as undirected). The clustering coefficient of the network is the mean 

over all nodes with degree >1. We computed the clustering coefficient for 

each natural network and its corresponding set of random networks. The 

normalized measure was obtained by dividing the measure of the real network 

by the mean of the random networks. That normalized clustering coefficient 

significantly increases with the variability of the environment (Fig. S4a). 

 

2.2  Betweenness-centrality 

Centrality of node X is defined as the number of shortest paths between pairs 

of nodes in the network that go through X.  Betweenness centrality measures 

the average centrality of all nodes in the network. We scaled this parameters 

by dividing it by the maximal value that could be obtained for a network of the 

same size [3]. Analytic analysis of this measure reveals that networks with a 

tree like topology have higher betweenness than networks with cycles. The 

intuition behind this is that for acyclic graph, each non leaf node must be 

visited when traveling from one side of the tree to the other side. When adding 

shortcuts to the tree, one creates alternative pathways and the centrality of the 

node decreases. We find that the normalized betweenness-centrality is anti 

correlated with variability (Fig. S4b).   

      

            2.3 Cyclic-coefficient 

The cyclic coefficient of a node is defined as the inverse of the mean of the 

shortest loop length connecting it with each pair of its neighbors [4]. Cyclic 

coefficient of a network is the mean over all nodes with degree>1. Networks 

without cycles, such as perfect trees, have cyclic coefficient of zero. 

Generally, tree like networks are characterized by low cyclic coefficient. We 

normalized this parameter by the mean of its value for randomized networks. 



 

We find that the cyclic coefficient correlates with the variability of the 

environment (Fig. S4c). 

Figure S4: 

a.      b. 

 

 

 

 

 

 

 

c. 

 

 

 

 

 

 

 

 

 

3. Correlations between modularity and organisms’ attributes 

3.1 Single attributes analysis 

We considered a certain set of possible factors that can explain the 

modularity level of organism’s metabolic network: 

1. Total gene number 

2. Number of transcription factors 

3. Fraction of transcription factors out of all genes 

4. Phylogenetic relations 

The phylogenetic distance between two organisms was defined as 

the length of the path between them on the phylogenetic tree. The 

latter was constructed base on the KEGG DB: 

http://www.genome.jp/kegg/catalog/org_list.html  
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Fig S4: Topological indices as function of variability 
in the environment: 

a. Normalized clustering-coefficient 

CC(Real)/CC(Rand) . 

c=0.62, p< 10
-4

 

b.    Normalized betweenness-centrality 

 c= -  0.66 , p< 10
-4

 

c..    Normalized cyclic-coefficient.  

c=0.41, p< 10
-4

 
 



 

 

Figure S5: 

a.     b. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S1:  Summary of Univariate Analysis 

               

 

           

Correlation 

Coefficient 

(R)  

    

Fraction of  

Transcription Factors      

 

Total 

number of 

Transcription 

Factors 

 

 

Total 

Number of 

Genes 

 

Phylogenetic 

Distance 

 

Qm 

 

 

0.65 

 

0.62 

 

0.51 

 

0.1 

Fig S5: Relation between modularity (Qm) and a. fraction of transcription factors, b. phylogenetic relatedness. 

b. Each dot corresponds to a pair of bacteria. Its Y axis corresponds to the difference in Qm and its X axis corresponds to the 

evolutionary distance between these bacteria. 
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3.2  Multi way  analysis of variance (n-way ANOVA) 

 

Multi way analysis was performed in order to evaluate the quality of each 

presumably explanatory factor while taking into account the effects of all 

other variables on the response (e.g. ∆ Qm). Since the phylogenetic 

distance is an attribute of a pair, we perform pairs analysis. That is, for 

each pair we consider 5 measures: ∆#(Partial)TF, ∆ #Genes, Phylogenetic  

distance and  ∆ Qm.  Using the Matlab function anovan, one obtains a  

p-value for each explanatory variable. The lower the p-value, the stronger 

is its association to the response variable. To obtain a distribution of  

p-values we performed a bootstrap procedure, where we sampled with 

repetitions 100 samples for 1000 iterations. We find that the partial 

number of transcription factors out the total number of genes is the best 

predictor of modularity. Genome size is a less powerful predictor, and 

phylogenetic distance is a weak predictor. 

We also evaluated the influence of each attribute on the environmental 

variability (Fig S7). 

 

 

                                    

Figure S6: P-values histogram for modularity prediction 
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Fig S6: P-values histogram of ∆Qm explanatory variables. Sample size equals 100; histogram was 

obtained from 1000 samples. 

 



 

 

        

 

Figure S7: P -values histogram for variability prediction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Quantifying structure-function association in the metabolic networks 

We tested the structural modules, obtained from the Newmann-Girvan algorithm, 

for enrichment in metabolic functions. We score the strength of <Structure, 

Function> association by evaluating two measures: 

• Functionality –The fraction of structural modules that are significantly 

enriched in   at least one metabolic function. 

• Coverage – The fraction of metabolic functions that are found to be enriched 

in at   least one structural module in the network. 

 

We found that these quantities correlate well with the variability in the environment.  
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Fig S7: P-values histogram of environmental variability explanatory variables.  

Sample size equals 100; histogram was obtained from 1000 samples. 



 

Fig S8: Functionality and Coverage as a function of environmental variability   

a.          b. 

   

 

 

 

 

 

 

 

 

 

 

c. 

 

 

 

 

 

 

 

 

 

 

 

 

5. Networks Visualization for E.coli and Buchnera  

To help understand the structure of different networks, it is useful to obtain an 

image of the networks, in which the networks are of the same size. We therefore 

reduced a “varying environment” network in a manner that preserved its original 

topological properties. This step enables comparison of two equally sized networks 

from two different environmental groups (Fig S9a,b). Please note that the procedure 

described below is meant only for ease of visualization, and is distinct from the 
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Fig S8: a. habitat variability (x axis) and the 

correspondence of structural modules to metabolic 

functions (y axis) c=  0.66 ,p<10
-4

. b. habitat 

variability (x axis) and the correspondence of 

metabolic functions to structural modules (y axis) 

c=  0.6 1,p<10
-4

. c. The fraction of the central 

metabolism module nodes out of the total number 

of nodes in the metabolic network is presented as a 

function of environmental variability. 
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reduction procedure defined in section 1.3.1 that was used for comparison of 

structural indices. 

 

 

5.1 Description of the procedure for metabolic network reduction for 

visualization 

 

Motivation: 

Given two networks: G1: = (V1, E1), G2: = (V2, E2) where V1>V2, E1>E2. 

We wish to compare these networks by eye with respect to stractural properties. 

As we saw, topological comparison between two different size networks involves 

normalization of the structural indices (over random network ensemble). Though this 

is simple computationally, capturing the difference by eye is less intuitive. As a 

preceding step we then wish to reduce the larger network (V1) by removing V1-V2 

nodes and yet to preserve the information embedded within the original network with 

respect to structural as well as functional properties. Although a common procedure 

for connected sub network sampling, ‘breadth-first-search’ (BFS) is applicable for 

some applications that involve analysis of local structural properties such as clustering 

coefficient and network motifs [5], it is not applicable when analyzing global 

properties (i.e. modular organization). As an example, lets consider the network of 

varying environment bacteria, composed of ~20 modules. We would like to remove 

80% of its nodes. If we perform BFS from different starting points, the resulted 

network will usually correspond to 1-3 modules of   the original network and thus will 

not reflect the metabolic capabilities of the original network as well as its pronounced 

modular design. In what follows we describe our method that uses a special attribute 

of metabolic networks: its hierarchical modular organization that reflects both the 

structural and the functional aspects we would like to maintain. 

 

Reduction Procedure: 

In the present context we want to compare two networks of related bacteria 

with different lifestyles. The varying environment network (of E.coli) composed of 

473 nodes while constant environment network (of Buchnera) has only 89 nodes.  

 

 



 

• Problem Generalization: 

We can generalize the question in the following manner: 

Given a network G: = (V, E), Q (G) =Q* 

 

       Construct a network G’: = (V’, E’), Q(G’)=Q* 

where 

� V ‘ ⊂  V 

� E’ ⊂ E 

� E’/V’ ~ E/V 

That is, we wish to construct subnetwork that will preserve the modular organization 

(Q*) of the complete network (Constrain 3 will be fullfilled by our construction). 

According to the Newman and Girvan approach, the modularity score of a 

network (Q) is the summation over the strength of its modules. That implies that we 

can reduce our problem of network reduction to a problem of reducing a module 

while preserving its strength (where module strength is defined as its contribution to 

its Q measure). Formally, given a module Mi(Vi, Ei ) with strength Qi, we need to 

build a module Mi’(Vi’,Ei’) ,  Vi’ ⊂  Vi , Ei’ ⊂  Ei  such that Qi’=Qi . This procedure 

ensures that Q is preserved since Q=∑Qi , thus it preserves the modular organization 

of the complete network. A module’s strength can be considered as the ratio between 

edges within the module to edges that connect it to other modules. This intuitive 

definition is the key for the present construction. It is easy to see that we can maintain 

(at least approximately) the ratio of number of edges inside the module to the number 

of edges outside the module, for each module, and by that obtain a smaller network 

with the same community structure. 

 

 

 

 

 

 

 

 

 

 



 

Procedure ReducedNetSameQ(G,S)  

{ 

 

     // G(V,E) - network to be reduced 

    // S = target size, S<|V| 

 

     G’={}  //Reduced network initialization 

     S’={}  // Module size vector of the reduced network 

1.  (Q,M)=ComputeModularity(G) 

//M:  M(i , j)=1 if node j belongs to module i 

     // M (i): list of nodes in module i 

     // Q: array of modules strength, ∑Q(i)=Q* 

     2.  for i=1,….,Nm      //Nm= number of modules 

     3.           S’(i)=|M(i)| *S/|V|   // Compute the size of the reduced module 

     4.           Gi=GetSubNet(M(i),G) // the induced subgraph over the module’s nodes. 

     5.           (Gi’,Lout(i))=ReduceModuleSameQi(G,Gi,M(i),Q(i), S’(i),S(i)) 

     6.           G’=G’ ∩  Gi’; 

     7.           (G’’)=ConnectModules(Lout, G’) 

// Connect the modules (Gi’ subnetwork) allowing Lout(i) edges for 

module i ,this  needs to be relaxed when the connections are between 

modules  of different sizes. The criterion for choosing the edges is 

based on the distances between the reduced modules. 

     8.           G’=G’ ∩ G’’; 

     9.    Return G’ 

} 

 

Procedure ReduceModuleSameQi (G, Gi, Mi, Qi,  Si’, Si) 

{ 

 1. Lin=|Gi| //number of links (edges) within the module 

 2. Lin’=Lin * Si’/Si; 

 3. Lout=E(Mi)-2*Lin 

 4. Lout’= Lout * Si’/Si ; 

 5. Gi’=SelectSubNet(Gi,Lin’,Si’)  //returns reduced module i.  

with Si’ nodes and Lin’ edges 



 

 6. Return Lout(i),Gi’ 

             // Gi’ within module edges 

 //  Lout(i) number of allowed out edges for module i 

} 

Procedure SelectSubNet (Gi,Lin’,Si’) 

{ 

1. Nodes={} 

2. Nodes(1)=FindCenterNodeInModule(Gi) 

3. for i=2,….Si 

      4.   Nodes(i)=ClosestNodeToModule //choose the closest node to 

                                                        the nodes already selected 

5.    Mi’=GetSubNet(Nodes,G) //the induced sub-graph over the selected nodes 

6.    Select Lin’ edges from Mi’ 

7.    If |Mi’|<Lin’ 

8.  add Lin’-|Mi’| edges between closest nodes in Mi’ 

9.  Return Gi’ 

 

} 

 

Practically, it may be hard to obey all the constrains imposed by the algorithm, 

and yet our experience suggests that even if some of the local constrains are relaxed 

the resulting network seems to exhibit very similar hierarchical organization as the 

original one. Future work may employ Monte-Carlo optimization approaches to 

satisfy this problem.  

 

 

 

 

 

 

 

 

 

 



 

5.3 Results 

 

Figure S9: 

a.    b.      c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig S9: Reduction of a network composed of the ten largest modules in the E.coli network (connected subgraph, ~80% of 

the original network).  

a. Full network (giant component), 473 nodes (Metabolites), 575 edges (Reactions).  

b. Giant-component composed of only the 10 largest modules of the network, 330 Nodes, 407 edges. 

c. Reduced network 89 Nodes, 114 Edges. 

The reduced network (c) has a similar modularity score as the original network (Qreal~0.8). 
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